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Previously developed characteristic-wave-based boundary conditions for multi-
component perfect gas mixtures are here extended to real gas mixtures. The character-
istic boundary conditions are derived from the one-dimensional wave decomposition
of the Euler equations, and the wave amplitude variations are determined from the
prescribed boundary conditions on the flow variables. The viscous conditions are ap-
plied separately. For multidimensional simulations, the boundary conditions for each
coordinate direction are applied additively. These boundary conditions are tested on
a representative two-dimensional problem—the propagation of an incompressible
vortex by a supersonic flow with outflow conditions specified as nonreflecting—
solved using a high-order finite-difference scheme. Simulations conducted for a
heptane–nitrogen mixture flow with strong real gas effects display excellent, nonre-
flective wave behavior as the vortex leaves the computational domain, verifying the
suitability of this method for the multidimensional multicomponent real gas flows
computed. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Boundary conditions for fluid dynamic equations play a crucial role in determining
the character of the solution. Since most fluid dynamic problems of practical interest are
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complex, a solution to the set of differential equations and boundary conditions is usually
found numerically rather than analytically. For these types of solutions, Poinsot and Lele [1]
distinguish between physical and numerical boundary conditions. The physical boundary
conditions are those intrinsically imposed by the problem to be solved. However, for some
types of physical problems described by the Euler or Navier–Stokes equations, the number
of necessary and sufficient boundary conditions is smaller than the number of primitive
variables [1, 2]. In such cases, although the physical boundary conditions are such that
the physical problem is well-posed, the numerical problem may be ill-posed, due to the
finiteness of the computational domain or due to its discretization, unless numerical bound-
ary conditions can be specified in addition to the physical boundary conditions. Thus, the
numerical boundary conditions can be considered as compatibility relations that must be
added to the physical boundary conditions to palliate the uncertainty in the variables that
are not specified by the physical boundary conditions. These numerical boundary condi-
tions must prevent the introduction of spurious numerical effects, such as wave reflections
from a nonreflecting boundary. Of the many boundary schemes that are documented in the
literature, we focus on those which have been successfully applied to compressible Navier–
Stokes simulations using high-order finite-difference methods. These are generally based
on characteristic wave analysis at each boundary point [1, 3–7], with the Reynolds number
for viscous flows being considered high enough such that viscous terms can be consid-
ered as “corrections” to the mainly hyperbolic nature of the Navier–Stokes equations [2, 8].
These studies were all performed for fluids obeying the perfect gas law, for which thermody-
namic variables (notably pressure) are easily computed from the density and internal energy
(or temperature).

However, there are many practical applications in which the fluid is not a perfect gas.
Such situations occur in high-pressure reactive flows typical of rocket, diesel, or gas turbine
engines, as well as in fluid flowing in pipes laid on the ocean floor. These applications
provide the motivation to extend perfect gas boundary schemes to real gases. The main
difficulty is that for a real gas equation of state (EOS), the complexity of the EOS de-
mands special care in computing thermodynamic variables at the boundaries, constituting
an additional computational overhead compared to a perfect gas EOS, as illustrated by
Shyue [9]. Furthermore, for the intended application of direct numerical simulation of tur-
bulent flows, we desire a boundary scheme that can easily be coupled to the high-order
finite-difference scheme used to discretize the conservation equations, without compromis-
ing numerical stability. Based on these considerations, the characteristic-based boundary
scheme of Poinsot and Lele [1] is a prime candidate for application to real gas flows, es-
pecially since Baum et al. [7] have already shown that this method can be extended to
multicomponent perfect gas flows. The essence of the method is a local one-dimensional
inviscid (LODI) set of equations, described at the boundary in characteristic form. The
wave amplitude variation in the characteristic wave formulation is then consistently com-
puted to satisfy the desired boundary conditions. The LODI equations are considered to
embody most of the behavior at the boundary, so that the viscous conditions can be applied
separately [8].

The present work is devoted to the derivation of accurate and consistent boundary con-
ditions for multicomponent flows where the fluid is a real gas. Section 2 contains the
conservation equations for real gas flows, and then the derivation of the boundary conditions.
In Section 3, we discuss the generic implementation of these boundary conditions for typical
problems encountered in fluid dynamics, and in Section 4, we test the derived boundary
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conditions for a heptane–nitrogen mixture with a real gas EOS. Finally, we summarize this
work and offer further comments in Section 5.

2. GENERAL EQUATIONS

The conservation equations are the typical compressible Navier–Stokes equations aug-
mented by the species and energy equations

∂ρ

∂t
+ ∂(ρu j )

∂x j
= 0, (1)

∂(ρui )

∂t
+ ∂(ρui u j + pδi j )

∂x j
= ∂τi j

∂x j
, (2)

∂(ρET )

∂t
+ ∂[(ρET + p)u j ]

∂x j
= −∂qIK j

∂x j
+ ∂(τi j ui )

∂x j
, (3)

∂(ρYα)

∂t
+ ∂(ρYαu j )

∂x j
= −∂ Jα j

∂x j
for α = 1, N , (4)

where t is the time, x j is the j th coordinate, ρ is the mass density, u j is the j th velocity
component, Yα is the mass fraction of species α (for N species

∑N
β=1 Yβ = 1), p is the

pressure, and ET = E + 1/2ui ui is the total energy (internal energy, E , plus kinetic energy).
Additionally, τi j is the Newtonian viscous stress tensor

τi j = µ

[
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

]
, (5)

where µ is the mixture viscosity which is generally a function of the thermodynamic state.
The Einstein summation convention (summation over repeated indices) is used for i and j ,
but not over Greek indices α and β. Jα is the molar flux of species α, and qIK is the Irwing–
Kirkwood form of the heat flux [10]. In the species and energy equations, the respective
Fick mass diffusion and Fourier heat diffusion terms are now respectively complemented
by the Soret and Dufour terms representing the thermal diffusion contribution; therefore
Jα and qIK in general contain mass fraction, temperature (T ), and pressure gradient terms,
as shown by Harstad and Bellan [11–13]. The system of Eqs. (1)–(4) is closed by a real
gas EOS, with N + 2 thermodynamic variables completely specifying a thermodynamic
state.

2.1. Real Gas Thermodynamic Relations

For concreteness, we set the form of the EOS to be p = p(v, T, Y1, . . . , YN ), where v is
the molar volume, which is related to the density by v = m/ρ. The mixture molar weight
is given by m = ∑

mα Xα , where mα and Xα = mYα/mα are the molar weight and mole
fraction, respectively, of species α. The thermodynamic relations discussed below can all
be computed using the EOS.

The isentropic speed of sound is

a2
s = 1

ρκs
, (6)
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where κs is the isentropic compressibility, which is related to the isothermal compressi-
bility κT

κT = − 1

v(∂p/∂v)T,Yα

(7)

by

κs = κT − vT α2
v

/
C p, (8)

where

αv = 1

v

(
∂v

∂T

)
p,Yα

= − (∂p/∂T )v,Yα

v(∂p/∂v)T,Yα

(9)

and C p is the molar heat capacity at constant pressure

C p =
(

∂h

∂T

)
p,Yα

= m

(
∂ H

∂T

)
p,Yα

, (10)

with H being the enthalpy per unit mass and h being the enthalpy per mole, h = mH

H = E + p

ρ
= E + pv

m
. (11)

(The subscript Yα on a derivative denotes that all the mass fractions are held constant.) The
molar heat capacity at constant volume is

Cv = m

(
∂ E

∂T

)
v,Yα

= C p − T α2
vv

κT
. (12)

In terms of the partial molar quantities, the enthalpy and molar volume are written as

H =
N∑

α=1

hα Xα/m =
N∑

α=1

(hα/mα)Yα; v =
N∑

α=1

Xαvα =
N∑

α=1

(mvα/mα)Yα, (13)

where the quantities

vα = (∂v/∂ Xα)T,p,Xβ (β �=α) and hα = (∂h/∂ Xα)T,p,Xβ (β �=α) (14)

are the partial molar volume and the partial molar enthalpy.
To derive the boundary conditions, the following internal energy derivatives are required:

(
∂ E

∂ρ

)
p,Yα

= 1

ρ

[
p

ρ
− C p

mαv

]
, (15)

(
∂ E

∂p

)
ρ,Yα

= C pκs

mαv

= C p

mαv

1

ρc2
, (16)

(
∂ E

∂Yα

)
ρ, p,Yβ

β �= α

= hα

mα

− ρC p

mαv

vα

mα

. (17)
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2.2. Perfect Gas Thermodynamic Relations

The perfect gas EOS is

p = ρRT = Ru T

v
, (18)

and the various thermodynamic quantities are

hα = C p,αT, vα = v, (19)

αv = 1

T
, κT = 1

p
, κs = 1

γ p
, (20)

where γ = C p/Cv

Cv = C p − Ru, a2
s = γ p

ρ
. (21)

Additionally, the internal energy is

E = Cv

m
T = p

ρ

1

(γ − 1)
. (22)

2.3. Euler Equations Wave Amplitude Variations

To derive the characteristic boundary conditions, we analyze the Euler equations as in
Poinsot and Lele [1] and Baum et al. [7]. The conservative form of the Euler equations
augmented by the species equations is obtained by setting the right-hand sides of Eqs. (1)–
(4) to zero. To perform the wave decomposition, we use the Euler equations in primitive
form, and the set of primitive variables {ρ, u1, u2, u3, p, Y1, . . . YN }. (Note that Poinsot and
Lele [1] use p, whereas Baum et al. [7] use T as a variable.) We change variables from E
to p using Eqs. (15)–(17) to obtain

∂ρ

∂t
+ u j

∂ρ

∂x j
+ ρ

∂u j

∂x j
= 0, (23)

∂ui

∂t
+ u j

∂ui

∂x j
+ 1

ρ

∂p

∂xi
= 0, (24)

∂ρ

∂t
+ u j

∂p

∂x j
+ ρc2 ∂u j

∂x j
= 0, (25)

∂Yα

∂t
+ u j

∂Yα

∂x j
= 0, (26)

where the speed of sound, c, is given by

c2 =
(

∂p

∂ρ

)
E,Yα

+ p

ρ2

(
∂p

∂ E

)
ρ,Yα

(27)

and turns out to be the isentropic speed of sound (as).
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This set of equations is the same for the perfect gas case, therefore the eigenvalues or
wave speeds (λi ) are the same, as are the wave amplitudes corresponding to each eigenvalue
(Li ). Considering only the x1-direction:

L1 = (u1 − c)

(
∂p

∂x1
− ρc

∂u1

∂x1

)
for λ1 = u1 − c, (28)

L2 = u1

(
∂p

∂x1
− c2 ∂ρ

∂x1

)
for λ2 = u1, (29)

L3 = u1

(
∂u2

∂x1

)
for λ3 = u1, (30)

L4 = u1

(
∂u3

∂x1

)
for λ4 = u1, (31)

Lα+4 = u1

(
∂Yα

∂x1

)
for λα+4 = u1, α = 1, N , (32)

LN+5 = (u1 + c)

(
∂p

∂x1
+ ρc

∂u1

∂x1

)
for λN+5 = u1 + c. (33)

After casting the spatial derivatives in terms of the Li , the LODI system for the primitive
variables containing time- and x1-derivative terms is

∂ρ

∂t
+ 1

c2

[
(LN+5 + L1)

2
− L2

]
= 0, (34)

∂u1

∂t
+ LN+5 − L1

2ρc
= 0, (35)

∂u2

∂t
+ L3 = 0, (36)

∂u3

∂t
+ L4 = 0, (37)

∂p

∂t
+ LN+5 + L1

2
= 0, (38)

∂Yα

∂t
+ Lα+4 = 0; α = 1, N . (39)

Depending on the application, a different set of primitive variables may be more conve-
nient for the LODI system. The change of variables is accomplished using thermodynamic
relations and the EOS for switching from p to T , as illustrated in the Appendix.

From the above Eqs. (34)–(39), one can find the rate of change of the conservative
variables

∂ρ

∂t
+ d1 = 0, (40)

∂ρu1

∂t
+ u1d1 + ρd2 = 0, (41)

∂ρu2

∂t
+ u2d1 + ρd3 = 0, (42)
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∂ρu3

∂t
+ u3d1 + ρd4 = 0, (43)

∂ρET

∂t
+

(
ET + p

ρ

)
d1 + ρui di+1 +

N∑
α=1

ρdα+4

(
∂ E

∂Yα

)
ρ,p,Yβ

β �= α

+ C p

mαv

dN+5 = 0, (44)

∂ρYα

∂t
+ Yαd1 + ρdα+4 = 0; α = 1, N , (45)

with

d1 = 1

c2

[
(LN+5 + L1)

2
− L2

]
= ρ

∂u1

∂x1
+ u1

∂ρ

∂x1
, (46)

d2 =
[LN+5 − L1

2ρc

]
= u1

∂u1

∂x1
+ 1

ρ

∂p

∂x1
, (47)

d3 = L3 = u1
∂u2

∂x1
, (48)

d4 = L4 = u1
∂u3

∂x1
, (49)

dα+4 = Lα+4 = u1
∂Yα

∂x1
, (50)

dN+5 = L2

c2
= u1

c2

[
∂p

∂x1
− c2 ∂ρ

∂x1

]
.

(51)

3. APPLICATION OF CHARACTERISTIC BOUNDARY CONDITIONS

In the previous section, wave decomposition was used to rewrite the time and spatial
derivatives in terms of wave amplitude variations. We distinguish between the outgoing
waves which carry information from the interior of the computational domain and which
therefore are based on the solution of the conservation equations and the incoming waves
which carry information from the exterior of the domain to the region where the solution is
sought. The outgoing wave amplitude variations are calculated from the derivatives at the
boundary, which are based on the interior points, whereas the incoming wave amplitude
variations are determined from the boundary conditions. In the discussion that follows, it
is assumed that waves travelling in the x1 > 0 direction exit the computational domain.
The definition of incoming and outgoing waves is reversed if waves entering the domain have
λi < 0. With this convention, at a (subsonic) boundary where 0 < u1 < c, the outgoing wave
amplitudes are computed from the interior points, whereas the incoming wave amplitude
(L1 corresponding to λ1 = u1 − c) is derived from the specified boundary conditions. On
the other hand, at a (subsonic) boundary where −c < u1 < 0, the incoming wave amplitude
variations are set to zero (meaning that there are no waves) except for those that can be
derived from the specified boundary conditions, whereas the outgoing wave amplitude
variation (LN+5 corresponding to λN+5 = u1 + c) is computed from the interior points.

3.1. Subsonic Slip-Wall Boundary Conditions

At slip walls, the normal velocity is zero, i.e., u1 = 0. Then, from Eq. (35), L1 = LN+5

and the remaining wave amplitude variations are determined from the interior points using
Eqs. (29)–(33).
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3.2. Inflow Boundary Conditions

One possibility of specifying inflow conditions is to fix ρ, ui , and Yi at the inflow. In
this case, the amplitude of incoming waves is set to zero, and ρET is updated according to
the outgoing wave amplitude variation (L1 or LN+5) determined from interior points using
Eq. (28) or (33).

3.3. Subsonic Nonreflecting Outflow Boundary Conditions

A nonreflecting condition can be imposed by setting the amplitude of incoming waves
to zero, i.e., L1 = 0. Alternatively, the pressure at “infinity” can be used, e.g., through
L1 ∝ (p − p∞) [1, 14]. The remaining wave amplitude variations are determined from the
interior points using Eqs. (29)–(33).

3.4. Supersonic Outflow Boundary Conditions

In the supersonic case, all the waves are outgoing, so the wave amplitude variations are
determined from the interior points using Eqs. (28)–(33).

4. TESTS: HEPTANE–NITROGEN MIXTURES

To test the implementation of the consistent boundary condition based on the character-
istic wave method we perform computations for a supercritical two-component nitrogen–
heptane flow using Eqs. (1)–(4). The Peng–Robinson EOS, the calculation of thermody-
namic quantities from the EOS, and the form of the molar and heat fluxes are described
in Miller et al. [15]. The equations are solved using fourth-order explicit Runge–Kutta
time integration, along with eighth-order finite-differencing and tenth-order explicit spatial
filtering of Kennedy and Carpenter [16]. The filter is applied only at interior points to the
conservative flow variables in each coordinate direction separately at the end of each time
step; for other flow problems, it may be possible to apply the filter less frequently. The
implementation of the characteristic boundary condition requires no additional thermody-
namic variables or derivatives at the boundary points compared to the interior points—αv

and as are computed for determining the time step based on the inviscid CFL condition;
the other thermodynamic variables and the derivatives of the primitive variables are used
for the calculation of the viscous stresses, heat fluxes, and molar fluxes. We will discuss
briefly some one-dimensional acoustic wave propagation tests, then present results for a
two-dimensional vortex convection test.

4.1. One-Dimensional Acoustic Wave Propagation

To test the behavior of the boundary scheme at nonreflecting boundaries, a one-dimen-
sional acoustic wave propagation problem was simulated on a two-dimensional domain.
Both the wave and its direction of the propagation are perpendicular to that of the sub-
sonic mean flow, with periodic boundary conditions in the streamwise direction. The
initial streamwise velocity and temperature are uniform. The viscous conditions are ap-
plied as recommended by Poinsot and Lele [1]: for the subsonic outflow, the gradients
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of the heat flux and of the shear stresses normal to the boundary are set to zero. This
configuration is similar to the initial stages of a supercritical temporal mixing layer simu-
lation, in which strong pressure gradients are caused by the initial vorticity perturbations
within the layer. Three cases having either a uniform mass fraction, or a linearly varying (in
the cross-stream direction) mass fraction, or a heptane mass source with a Gaussian profile
(in the cross-stream direction) where simulated. The mass source is intended to mimic fea-
tures of mass sources that would arise from chemical reactions or the mass emission (not
necessarily evaporation, since at supercritical conditions there is only a single phase) from
chunks of supercritical fluid (usually modeled as droplets) in a spray. Due to this heptane
mass source term, the mass fraction is increasing with time. In all cases, the acoustic waves
exited the domain with minimal reflection. The use of consistent boundary conditions was
found to be particularly important in the third test case, where inaccuracies in the boundary
conditions, such as introduced by approximate relations derived from the perfect gas EOS,
substantially affected the flow evolution throughout the domain.

4.2. Two-Dimensional Vortex in a Uniform Supersonic Flow

Colonius et al. [17] discussed the inaccuracies that may occur when one uses one-
directionally derived boundary conditions in a two-dimensional setting, especially pressure
reflections at nonreflecting boundaries. To test the capability of our consistent-boundary-
condition one-dimensional analysis for usage in higher dimension simulations, we adopted
the test of a two-dimensional vortical structure propagation. The focus is here on the behavior
of the pressure field during the vortex propagation as well as after the vortex exits the domain,
the requirement being that the outflow conditions must be satisfactory for the hydrodynamic
field as well as for the pressure field. This means that no pressure wave reflection should
be detected, even after the vortex exits the domain.

Following the studies of Colonius et al. [17] and Poinsot and Lele [1], an incompressible
vortex is imposed upon a uniform supersonic flow of velocity u1 = U0 and Mach number
M0, with uniform temperature T∞ and uniform heptane mass fraction, Yh,∞. Similar to
Poinsot and Lele [1], the vortex is given by the stream function

ψ = C exp

[
−1

2

(
x2

1 + x2
2

R2
c

)]
, (52)

the velocity perturbations are

u′
1 = ∂ψ

∂x2
, u′

2 = − ∂ψ

∂x1
, (53)

and the pressure is

p = p∞(1 + w) (54)

w = [(u′
1)

2 + (u′
2)

2]1/2. (55)

The initial density is computed from the EOS with T = T∞ and Yh = Yh,∞. The charac-
teristic boundary conditions are supersonic inflow at x1 = 0 with fixed ρ, u1, u2 and Yh ,
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and supersonic nonreflecting outflow conditions on the other boundaries, as described in
Sections 3.2 and 3.4. Following Poinsot and Lele [1], the viscous conditions are ∂τ11/∂x1 =
0 at the inflow, ∂τ12/∂x1 = 0, ∂qI K ,1/∂x1 = 0 and ∂ Jh1/∂x1 = 0 at the outflow, and
∂τ12/∂x2 = 0, ∂qI K ,2/∂x2 = 0 and ∂ Jh2/∂x2 = 0 at the lateral boundaries. Here Jh is the
heptane molar flux, for which we have adopted the same type of boundary conditions as for
the heat flux. The boundary conditions are applied additively at the corners by considering
each coordinate direction separately. This approach can be extended in a straightforward
manner to three dimensions.

The test case considered has a freestream Mach number of 1.1, a freestream pressure
of 60 atm, and the maximum velocity perturbation wmax/U0 = 1.5 × 10−3. The maximum
initial pressure is 102 atm. The initial heptane mass fraction is Yh,∞ = 0.9, and the initial
temperature is T∞ = 600 K. The domain size is 0.2 m × 0.2 m with a grid of 120 points
in each direction, and the length scale, 2Rc, is 0.03 m. For these freestream conditions, the
compression factor, Z = p/(ρRu T/m), is 0.75, and thus this mixture departs considerably
from a perfect gas. Contour plots of the vorticity

ω3 = ∂u2

∂x1
− ∂u1

∂x2
,

dilatation

∇ · u = ∂u1

∂x1
+ ∂u2

∂x2
,

ρ (kg/m3), and p (Pa) are presented in Figs. 1–5 at dimensionless times t∗ = tU0/

(2Rc) of 0, 2, 4, 6, and 8. Since the center of the vortex reaches the downstream boundary
at t∗ = 3.33, the illustrated time stations encompass a substantial duration after the vortex
exits the domain. In all these plots, solid lines denote contours of positive value and dashed
lines represent contours of negative value. As the vortex travels in the domain from left to
right, the contour plots show that both the vortex and the acoustic waves propagate out of
the domain with no discernible reflection, even at the corners.

To assess the circumstances under which the fluid may be modeled as a perfect gas
at the boundaries, a similar simulation with Yh,∞ = 0.5, T∞ = 800 K was carried out.
For these freestream conditions the compression factor, Z = p/(ρRu T/m), is 1.02, and
therefore this mixture is very close to a perfect gas. It was expected that boundary con-
ditions based on the (simpler) perfect gas EOS would work nearly as well as those based
on the real gas EOS. The results using the real gas EOS boundary conditions were sim-
ilar to those of the test case presented above, namely no discernible reflection of the
vortex as it exits the domain. However, computations based on perfect gas EOS bound-
ary conditions were unsuccessful, mainly due to inaccuracies in capturing the mass frac-
tion waves, even though the maximum mass fraction variation was only 2% of the mean
mass fraction. This indicates that real gas simulations must be carried out with the cor-
responding real gas EOS boundary conditions, even when the fluid is essentially a per-
fect gas. This also shows the necessity of consistent boundary conditions for real gas
simulations.
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FIG. 1. Propagation of vortex in uniform flow with Yh,∞ = 0.9, T∞ = 600 K: Contours of (a) vorticity,
(b) dilatation, (c) density (kg/m3), and (d) pressure (Pa) at tU0/(2Rc) = 0.
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FIG. 2. Propagation of vortex in uniform flow with Yh,∞ = 0.9, T∞ = 600 K: Contours of (a) vorticity,
(b) dilatation, (c) density (kg/m3), and (d) pressure (Pa) at tU0/(2Rc) = 2.
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FIG. 3. Propagation of vortex in uniform flow with Yh,∞ = 0.9, T∞ = 600 K: Contours of (a) vorticity,
(b) dilatation, (c) density (kg/m3), and (d) pressure (Pa) at tU0/(2Rc) = 4.
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FIG. 4. Propagation of vortex in uniform flow with Yh,∞ = 0.9, T∞ = 600 K: Contours of (a) vorticity,
(b) dilatation, (c) density (kg/m3), and (d) pressure (Pa) at tU0/(2Rc) = 6.
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FIG. 5. Propagation of vortex in uniform flow with Yh,∞ = 0.9, T∞ = 600 K: Contours of (a) vorticity,
(b) dilatation, (c) density (kg/m3), and (d) pressure (Pa) at tU0/(2Rc) = 8.

5. CONCLUSIONS

Consistent boundary conditions based on characteristic wave analysis were here derived
for multicomponent flows governed by real gas equations of state. The characteristic wave
analysis was used to develop a local one-dimensional inviscid system, which was used to im-
pose inviscid boundary conditions based on the desired behavior of waves at the boundary.
Appropriate wave amplitude variations for inflow and nonreflecting outflow boundary con-
ditions were described. The viscous conditions were imposed separately; chemical source
terms can also be considered in a similar manner. For multidimensional flow configurations,
the boundary conditions for each variable were additively applied for each direction, mak-
ing this method suitable for both two- and three-dimensional simulations. This method can
therefore be applied to direct numerical simulations of turbulent reacting real gas flows.

The boundary conditions have been successfully applied to both one-dimensional and
two-dimensional viscous problems. The two-dimensional problem consisted of the propa-
gation of an incompressible vortex by a supersonic flow. In this simulation, nonreflecting
conditions were used at the outflow and lateral boundaries. The fluid was a high-pressure
heptane–nitrogen mixture, described by a real gas equation of state. The conservation equa-
tions were solved using fourth-order Runge–Kutta explicit time integration and eighth-order
explicit finite differencing. Demonstrating the suitability of this boundary condition method
for this flow configuration, the vortex and the waves it generated exited the domain without
reflection.
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APPENDIX: WAVE AMPLITUDES USING TEMPERATURE

The specification of the wave amplitudes, Li of Eqs. (28)–(33), in terms of temperature
is most conveniently accomplished by using the EOS to express the pressure gradient in
terms of the density, temperature, and N mass fractions as

∂p

∂x1
= 1

ρκT

∂ρ

∂x1
+ αv

κT

∂T

∂x1
+ 1

κT

N∑
α=1

ρvα

mα

∂Yα

∂x1
. (A.1)

The local one-dimensional inviscid (LODI) equation for the temperature is

∂T

∂t
+ mT αv(LN+5 + L1)

2ρC p
+ L2

ραvc2
− 1

αv

N∑
α=1

ρvα

mα

Lα+4 = 0. (A.2)
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